MODEL 2000A

- Sizes // 16", 20" and 24"
- Pressure settings // $1.5-16 \mathrm{oz} / \mathrm{in}^{2}$
- Vacuum settings // 0.5-4 oz/in²
- Available in carbon steel, stainless steel, fiberglass and other materials

- Easy access manway combined with emergency relief

EMERGENCY PRESSURE RELIEF VALVE

Model 2000A is designed to provide emergency relief capacity beyond that furnished by the normal operating pressure relief valve on the tank. The valve protects the tank against rupture or explosion that could result from excessive internal pressures caused by fire, etc. As excessive pressure builds up, the Groth Model 2000A relieves excess pressure, then reseats when pressure has been dissipated. Removable stops can be provided which restrict the lift of the cover.

SPECIAL FEATURES

Model 2000A is built of corrosion resistant materials throughout. A grounding cable connects the head and flange. Groth's special fluoropolymer "cushioned air" pallet and peripheral guiding insures proper alignment and integrity of seating. Model 2050A incorporates a vacuum breaker for added vacuum relief capability.

Specifications subject to change without notice. Certified dimensions available upon request.

MODEL 2000A					
Size* (Metric)	Minimum Pressure Setting Weight Loaded	Maximum Pressure Setting Weight Loaded	A Width (Metric)	B Height ${ }^{\dagger}$ (Metric)	Approx. Ship Wt. Lbs. at min. setting
$\begin{gathered} \text { 16" } \\ (406 \mathrm{~mm}) \end{gathered}$	$1.50 \mathrm{oz} / \mathrm{in}^{2}$ (6.5 mbar)	16 oz/in² (69 mbar)	$\begin{aligned} & 23.50 " \\ & (597 \mathrm{~mm}) \end{aligned}$	$\begin{gathered} 11 " \\ (279 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 62 \\ (28 \mathrm{~kg}) \end{gathered}$
$\begin{gathered} 20 " \\ (508 \mathrm{~mm}) \end{gathered}$	$1.50 \mathrm{oz} / \mathrm{in}^{2}$ (6.5 mbar)	$160 z / \mathrm{in}^{2}$ (69 mbar)	$\begin{gathered} \mathbf{2 7 . 5 0 "} \\ (699 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 11 " \\ (279 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 88 \\ (40 \mathrm{~kg}) \end{gathered}$
$\begin{gathered} 24 " \\ (610 \mathrm{~mm}) \end{gathered}$	$1.50 \mathrm{oz} / \mathrm{in}^{2}$ (6.5 mbar)	16 oz/in ${ }^{2}$ (69 mbar)	$\begin{gathered} 32 " \\ (813 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 11 " \\ (279 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 114 \\ (52 \mathrm{~kg}) \end{gathered}$

MODEL 2050A

Size* (Metric)	Minimum Setting		Maximum Settings		BB Height Closed (Metric)	Approx. Ship Wt. Lbs. at min. setting
	Pressure Weight Loaded	Vacuum Spring Loaded	Pressure ${ }^{\text {s }}$ Weight Loaded			
16"	2.6 oz/in ${ }^{2}$	$0.5 \mathrm{oz} / \mathrm{in}^{2}$	8 oz/in ${ }^{2}$	23.50"	17.75"	69
(406 mm)	(11.2 mbar)	(2.2 mbar)	(34.5 mbar)	(597 mm)	(451 mm)	(31 kg)
20"	2.1 oz/in ${ }^{2}$	$0.5 \mathrm{oz} / \mathrm{in}^{2}$	$80 \mathrm{z} / \mathrm{in}^{2}$	27.50"	17.75"	95
(508 mm)	(9.1 mbar)	(2.2 mbar)	(34.5 mbar)	(699 mm)	(451 mm)	$(43 \mathrm{~kg}$)
$\begin{gathered} 24 " \\ (610 \mathrm{~mm}) \end{gathered}$	$\begin{aligned} & 1.9 \mathrm{oz} / \mathrm{in}^{2} \\ & (8.2 \mathrm{mbar}) \end{aligned}$	$0.5 \mathrm{oz} / \mathrm{in}^{2}$ $(2.2 \mathrm{mbar})$	8 oz/in ${ }^{2}$ (34.5 mbar)	$\begin{gathered} 32 " \\ (813 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 17.75 " \\ (451 \mathrm{~mm}) \end{gathered}$	$\begin{gathered} 120 \\ (55 \mathrm{~kg}) \end{gathered}$

* 150\# ANSI. or API 650 drilling compatibility. "Caution" - See IOM when mounting to API 650 flange. ${ }^{\text {s }}$ Maximum pressure setting on 16 " size $=40 z / \mathrm{in}^{2}$ ${ }^{\circ}$ Max. vacuum setting is 4 oz . $/ \mathrm{lin}^{2} \quad$ Fiberglass dimensions on request.

HOW TO ORDÉR

For easy ordering, select proper model numbers
MODEL \# SIZE MATERIAL OPTIONS

2000A Pressure Only
2050A Pressure/Vacuum

EXAMPLE $2000 \mathrm{~A}-20$ —5— T 100

[^0]| Air Flow Capacity at 100\% Overpressure (Double Set Pressure/Vacuum) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1000 Standard Cubic Feet per Hour at 60° F | | | | | | |
| Set Pressure / Vacuum (Ps) | Size | | | | | |
| InWC | oz/in ${ }^{2}$ | $16^{\prime \prime}$ Pressure | 20" Pressure | 24" Pressure | All Vacuum ${ }^{*}$ | 2050 Only |
| 0.87 | 0.50^{*} | | | | 65 | |
| 1.73 | 1.00^{*} | | | | 91 | |
| 2.60 | 1.50 | 422 | 668 | 970 | | For |
| 3.00 | 1.73 | 454 | 718 | 1043 | | Vacuum |
| 3.46 | 2.00^{*} | 487 | 771 | 1120 | 129 | Flow, |
| 4.00 | 2.31 | 524 | 829 | 1204 | | Use the |
| 4.33 | 2.50 | 545 | 862 | 1252 | | "C1" |
| 5.00 | 2.89 | 585 | 926 | 1345 | | Factor Table |
| 5.19 | 3.00^{*} | 597 | 944 | 1371 | 157 | Located with |
| 6.93 | 4.00^{*} | 689 | 1090 | 1583 | 180 | Model 2100 |
| 10.4 | 6.00 | 843 | 1334 | 1937 | | |
| 13.9 | 8.00 | 973 | 1539 | 2236 | | |
| 17.3 | 10.00 | 1087 | 1720 | 2498 | | |
| 20.8 | 12.00 | 1190 | 1883 | 2735 | | |
| 24.2 | 14.00 | 1284 | 2033 | 2952 | | |
| 27.7 | 16.00 | 1372 | 2172 | 3154 | | |

* Standard vacuum settings, consult factory for other settings.

FLOW CAPACITY CALCULATION

Flow capacity values listed above are based on full open valves at 100\% overpressure.

Read the flow capacity at 100\% overpressure directly from the table above. Use linear interpolation if the set pressure is not listed.

If the allowable overpressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable overpressure is more than 100%, consult your Groth Representative.

Calculate the percentage overpressure by the following formula. Note that all pressures are gauge pressure expressed in the same units of measure.

$$
\begin{aligned}
& P_{f}=\text { Flowing pressure } \\
& P_{s}=\text { Set pressure } \\
& \% O P=\left[\left(P_{f}-P_{s}\right) / P_{s}\right] \times 100
\end{aligned}
$$

Calculate flow capacity at less than 100\% overpressure according to the following example.

Example-To find " C " factor from table:
Read "C" factor for 75\% overpressure at intersection of row 70 and column 5 " C " factor at $75 \% \mathrm{OP}=0.95$

"C4" Factor Table - Pressure Only															
\%OP	0	1	2	3	4	5	6	7	8	9					
10	0.70	0.71	0.71	0.72	0.72	0.73	0.73	0.74	0.74	0.75					
20	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80					
30	0.80	0.81	0.81	0.82	0.82	0.83	0.83	0.84	0.84	0.85					
40	0.85	0.86	0.86	0.87	0.87	0.88	0.88	0.89	0.89	0.90					
50	0.90	0.90	0.90	0.91	0.91	0.91	0.91	0.91	0.92	0.92					
60	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.94	0.94					
70	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.96	0.96					
80	0.96	0.96	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.98					
90	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99	1.00	1.00					

Example-Flow Capacity Calculation

1. Read flow capacity at set pressure from table
2. Calculate overpressure

4 InWC set pressure $\left[\mathrm{P}_{\mathrm{s}}\right]$
7 InWC flowing pressure $\left[P_{\mathrm{f}}\right]$
3. Read "C" factor from table

Flow $=829,000$ SCFH
$\% \mathrm{OP}=[(7-4) / 4] \times 100=75 \%$
"C" $=0.95$
Flow $=0.95 \times 829,000=787,550$ SCFH

Air Flow Capacity at 100\% Overpressure (Double Set Pressure/Vacuum)							
1000 Normal Cubic Meters per Hour at $0^{\circ} \mathrm{C}$							

* Standard vacuum settings, consult factory for other settings.

FLOW CAPACITY CALCULATION

Flow capacity values listed above are based on full open valves at 100% overpressure.

Read the flow capacity at 100\% overpressure directly from the table above. Use linear interpolation if the set pressure is not listed.

If the allowable overpressure is less than 100%, modify the flow capacity using the appropriate "C" factor from the table. If allowable overpressure is more than 100%, consult your Groth Representative.

Calculate the percentage overpressure by the following formula. Note that all pressures are gauge pressure expressed in the same units of measure.

$$
\begin{aligned}
& P_{f}=\text { Flowing pressure } \\
& P_{s}=\text { Set pressure } \\
& \% O P=\left[\left(P_{f}-P_{s}\right) / P_{s}\right] \times 100
\end{aligned}
$$

Calculate flow capacity at less than 100\% overpressure according to the following example.

Example-To find "C" factor from table:
Read "C" factor for 75\% overpressure at intersection of row 70 and column 5 " C " factor at 75% OP $=0.95$

"C4" Factor Table - Pressure Only																
\%OP	0	1	2	3	4	5	6	7	8	9						
10	0.70	0.71	0.71	0.72	0.72	0.73	0.73	0.74	0.74	0.75						
20	0.75	0.76	0.76	0.77	0.77	0.78	0.78	0.79	0.79	0.80						
30	0.80	0.81	0.81	0.82	0.82	0.83	0.83	0.84	0.84	0.85						
40	0.85	0.86	0.86	0.87	0.87	0.88	0.88	0.89	0.89	0.90						
50	0.90	0.90	0.90	0.91	0.91	0.91	0.91	0.91	0.92	0.92						
60	0.92	0.92	0.92	0.93	0.93	0.93	0.93	0.93	0.94	0.94						
70	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.95	0.96	0.96						
80	0.96	0.96	0.96	0.97	0.97	0.97	0.97	0.97	0.98	0.98						
90	0.98	0.98	0.98	0.99	0.99	0.99	0.99	0.99	1.00	1.00						

Example-Flow Capacity Calculation

1. Read flow capacity at set pressure from table
2. Calculate overpressure

20" Model 2000A
100 mmWC Set Pressure $\left[\mathrm{P}_{\mathrm{s}}\right]$
175 mmWC Flowing Pressure $\left[\mathrm{P}_{\mathrm{f}}\right]$
3. Read "C" factor from table
4. Calculate flow capacity

Flow $=23,300 \mathrm{NCMH}$
$\% \mathrm{OP}=[(175-100) / 100] \times 100=75 \%$
"C" $=0.95$
Flow $=0.95 \times 23,300=22,135$ NCMH

[^0]: Indicates a 20" Model 2000A with Stainless Steel Body, Fluoropolymer Seat Diaphragm, ANSI 150\# drilled, Steam Jacket and no other options.

